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I.R. Lindemuth, D.D. Ryutov1), P.T. Sheehey2), V.I. Sotnikov

I. Introduction

The idea of Magnetized Target Fusion (MTF) has attracted increased interest in recent

years, because it might overcome the problem of high costs associated with conventional

magnetic or inertial fusion approaches.1 If MTF is interpreted in the general sense to

mean any pulsed system that works in a high-energy-density regime and uses a magnetic

field to improve energy confinement at peak compression, then it is clear from recent

publications that there are a large variety of possible driver and plasma target

combinations for MTF.2,3,4,5,6 For the target, a stable high-β plasma equilibrium is

desired, with energy confinement as good as Bohm or better.7 The focus of this paper is

the stability of one MTF possibility — the hard-core stabilized z pinch. Although

equilibrium and stability of a z pinch has been discussed in many papers and books, there

is renewed interest in the subtleties of z-pinch stability for application to MTF as well as

other topics. Pulsed power has been used in recent years to generate unprecedented

radiation pulses from wire-array z pinches,8 shear flow has been demonstrated to provide
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an interesting stabilizing effect,9 and the diffuse z pinch has many features in common

with dipole confinement also being studied for its potential to fusion.10

The hard-core stabilized target of interest, shown in Fig. 1, differs from an ordinary

diffuse z pinch because of the current-carrying central conductor, or hard core,  that is

helpful for forming a stable equilibrium in the absence of shear flow. In this geometry,

the plasma carries the return  current of the central conductor, whereas in the more

traditional z-pinch, the plasma carries the central current and the return current is carried

by outer conductors. The direction of current in the plasma is indicated schematically in

Fig. 1 as opposite to the direction of current in the hard core, which is the situation during

plasma formation. Later in time, when equilibrium is obtained, current in the plasma

flows in different directions at different radial locations as discussed below. The plasma

is bounded in the axial direction by room-temperature electrodes not shown. In a stable

plasma, energy confinement is presumably dominated by a combination of cross-field

thermal conduction in the presence of convective cells, and a heat flux carried by the

current moving through the plasma. This paper focuses on how plasma self-organizes

itself into a stable equilibrium with a pressure profile like that shown in Fig. 2. We plan

to address issues of energy confinement in future work.

The MAGO experiments, studied at the VNIIEF laboratory in Russia, appear to create

this type of plasma configuration using a unique dual chamber method to shock heat the

plasma.11 In MAGO the plasma may carry either the applied current or the return current,
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or both, depending upon the plasma dynamics, because of the unique insulator location

and breakdown across a nozzle.

A coaxial geometry would adapt readily to various high-voltage high-current implosion

drivers such as Shiva Star at the Air Force Research Laboratory, Atlas at the Nevada Test

Site, or explosive pulsed power systems such as those developed in Russia at the VNIIEF

laboratory. Also, a new experiment at the University of Nevada, Reno (UNR), is being

prepared to study wall-plasma interactions for this type of configuration. According to

numerical simulations of plasma heating and formation, existing hardware with minor

modifications could be used for the UNR experiment.12

In section II we review some well known properties of equilibrium and stability in a

diffuse z pinch, and introduce the nomenclature that will be used for discussion of

simulation results. Section III presents the an example of self-organization obtained using

two-dimensional simulations of the plasma formation process. Section IV examines some

interesting details of how interchange motion driven by instability converts an unstable

pressure profile into one that is stable starting with an idealized initial condition that is

easier to analyze than the relatively complex process of plasma formation. Section V

discusses and summarizes the results.

II. Review of equilibrium and stability for the stabilized hard-core z pinch

Assuming we have a purely azimuthal magnetic field with current flowing only in the r

and z directions, the only equilibrium solution possible has pressure contours and current
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contours that are nested cylinders aligned with the z axis. Current and pressure depend

only upon the radius, and there is no radial current in an equilibrium. Otherwise, contours

of pressure and current could not coincide, as they must for jxB to equal ∇∇∇∇p. In two-

dimensional numerical simulations to be discussed later in this paper, current flows in

both the radial and axial directions, and the evolution of plasma towards an equilibrium

of nested cylinders is observed during simulations. One implication for the diffuse z-

pinch geometry is that a system of finite length must have pressure balanced in the axial

direction by material walls (eg., electrodes). Thermal losses are mitigated however by the

fact that the heat must flow across the magnetic field.

Pressure balance in equilibrium can be written as follows:
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rrI ∫−= 2

0

2
2 8

)(
µ
π

 , (1)
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where δF(r) ≡ F(b) — F(a). The quantity β(r) is the ratio of p(r) to magnetic pressure

evaluated at the same radius. The right hand side of Eq. 2 can be thought of as

diamagnetism in a z pinch, with thermal energy approximately proportional to IδI. Eq. 2

is one way to write the Bennet relationship for uniform temperature pinches, in which

NkT is proportional to I2, where N is the number of particles per unit length.
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As shown early on by Kadomtsev,13 such an equilibrium will be stable to m = 0

interchanges provided that the gradient in pressure p(r) is small enough anywhere

pressure decreases as radius increases. The Kadomtsev criterion can be written Q < 1

where (for γ = 5/3):

( ) dr
dp

p
r

Q
β56

20
+
−

= (3)

For stability to higher m modes, Kadomtsev derives the additional requirement:

β

2m

dr

dp

p

r
<− (4)

If the pressure profile is marginally stable to m=0 with Q=1, Eqs. 3 and 4 show that the

modes with m = 1 or higher are stable if the maximum β is less than 2/5. From the

perspective of MTF, it is interesting to note that stability depends only on the gradient of

pressure, so if pressure is supported by a conducting boundary it should be possible to

have stability at any β provided the logarithmic gradient is sufficiently small. The

numerical studies in this paper are motivated by experimental design. To avoid m = 1

modes, the effects of which can not be investigated numerically in a two-dimensional

code, we have chosen parameters that produce β less than 2/5, but this may be overly

conservative.

One example of an equilibrium stable to all modes is shown in Fig. 2. In the radial region

beyond the peak pressure, Fig. 2 shows the shape of the Q=1 marginally stable profile.

The β at peak pressure is 2/5. Inside the point of peak pressure, the shape of the profile is
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arbitrary provided the pressure increases monotonically with radius, because then Q is

negative and clearly less than 1. In the limit where the pressure changes as a step function

at the point of maximum pressure, Eq. 2 shows that (β+1)I2 is continuous across the step,

which relates the change of current to the change in β. The marginally stable pressure

profile, derived by integrating Eq. 3 with Q = 1, can only be written in parametric form:14

2/5
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0 )8.0( β
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p
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The current I follows from Eqs. (5) and (6) because B = βµ p02 , and the parameter I0

can be expressed in terms of p0 and a. The parameters p0 and a are set by choosing the

maximum pressure and β value at a particular radius. The pressure profile can be

computed all the way to the axis in the absence of a hard core (dotted line in Fig. 2), but

in that case β goes to infinity at the axis, and the m=1 or higher modes are unstable with

any finite pressure gradient. Thus a hard-core conductor allows stability to all MHD

modes with a static equilibrium (no velocity) supported by arbitrarily small pressure at

the wall in the radial direction. Non-static possibilities are shear flow stabilization,15 or

possibly dynamic stabilization.16
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III. Self-organization in simulations of experimental plasma formation.

In designing the UNR experiment to study wall-plasma interactions in this geometry, it

was initially hoped that control of formation parameters (voltage, fill pressure, bias

current, etc.) would make it possible to generate the type of stable profile shown in Fig. 2

and discussed in Sec. II. Such profiles have been characterized in textbooks as

theoretically possible but difficult to achieve in experiment.17 As reported earlier, it was

not possible with one-dimensional simulations to generate stable profiles except for very

limited conditions, and then only during a brief interval of time.12 The subsequent, more

realistic two-dimensional simulations reported in this paper show in detail how

interchange motions can self-organize the plasma into a stable profile.

To simulate the experimental formation process, the geometry and current wave form are

chosen to be compatible with existing hardware.12 The hard core is assumed to be 32-cm

long and to have a 2-cm radius with a thin insulating cover. The outer return conductor is

assumed to be metal with an inner radius of 10 cm. For the plasma, the initial conditions

are taken to be a uniform annulus of fully ionized 1-eV deuterium between 2 and 3 cm

with density 8x10-4 kg/m3 (3.5 torr). This distribution of initial plasma is an idealized

version of what could be created with puff valves in an experiment. The temperature of 1

eV is not a critical parameter, and is chosen to give a reasonably small resistivity at the

beginning of the calculation so that a diamagnetic current sheet forms in the plasma as

current in the hard core increases. Experience with simulation of pulsed experiments has

shown that the details of ionization physics can usually be ignored during a fast-rising

current ramp because ionization energy requirements are small compared with ohmic
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heating, and shock heating processes under high-voltage conditions. A peak-to-peak

0.1% random perturbation of density is included in the initial conditions to seed

Rayleigh-Taylor like modes during the dynamic phase as described below. For the

simulation, the inner radial boundary at r=2 cm is assumed to be an insulator on which

current is specified to rise with a prescribed function of time. The outer radial boundary

at r=10 cm is taken as a zero temperature electrical conductor, which absorbs heat with

no change in temperature. The same type of electrical conductor is assumed at the top

boundary (half length z = 16 cm), which represents the end electrodes in an experiment.

The other boundary of calculation is assumed to be a reflecting boundary or plane of

symmetry, at the axial midplane (z=0).

The current wave form used in this simulation is the same as expected in experiments

with the UNR Zebra power supply. An initial bias current of 300 kA is assumed to exist

at t = 0, which would come from a slow-rising capacitor bank in the experiment.

Maximum β in the final plasma equilibrium decreases as bias current increases. The bias

current of 300 kA was chosen because maximum β in that case is about 0.4, which

satisfies the m=1 stability constraint as discussed in Sec. II. High voltage (2MV) is

applied at t=0, and current increases by about 1 MA in 100 ns. After that the current

becomes constant in time with an amplitude of about 1.2 MA because of crowbar action

in the experiment when current flashes over on the final insulator of the Zebra device (a

different component than the insulator on the hard core). The gas is ionized, accelerated

outwards, and shock heated by a current sheet that forms during the fast current rise. The
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time-varying impedance represented by the moving current sheet has a negligible affect

on the output waveform of the generator.

A two-temperature single-fluid magnetohydrodynamic (MHD) model is used for

simulations, with Braginskii coefficients of thermal conduction and electrical

resistivity.12 The assumed Ohm s law is E+vxB = ηj, which relates electric field E, fluid

velocity v, magnetic field B, current j, and resistivity η. A vonNeumann-Richtmyer

numerical viscosity is introduced to dissipate energy from shock waves in a manner that

conserves mass, momentum, and energy. As is well known, such a viscosity is required to

obtain accurate solutions to the MHD equations unless shock-tracking methods are used,

i.e., use of the numerical viscosity makes the calculations more accurate than they would

be otherwise. Most calculations were done with an array of 100x100 zones, using

progressively finer-scale resolution near low-temperature boundaries to improve

accuracy. It was found that a factor of 2 reduction in resolution changes results by less

than 10%. Higher resolution has yet to be implemented, and will entail larger data files

and even greater computational time. Typical simulations with 100x100 resolution

require about 4 hours on a Pentium 4 processor and generate 500 MB of data.

The time history of kinetic energy and thermal energy is shown in Fig. 3. The first peak

of kinetic energy occurs as the inverse pinch drives the plasma outwards, and then kinetic

energy goes to a minimum when the plasma compresses bias flux up against the outer

conductor and stagnates at about 280 ns. Compressional Alfven waves oscillate back and

forth radially while directed energy is converted into thermal energy. Between 1 and 2
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µs, most of the shock heating (i.e., the kinetic energy dissipated by the numerical

viscosity) has subsided and plasma temperature is about 420 eV.

Figure 4 shows contours of pressure (color) and current (lines) at four moments in time.

At the first point of stagnation (t = 280 ns) the plasma shows little sign of Rayleigh-

Taylor-like (RT) modes even though outward and inward acceleration has occurred. Near

the next point of stagnation (t = 400 ns) RT modes are starting to grow from the initial

random density perturbation. As discussed in Reference 11, the growth rate for RT modes

agrees qualitatively with the expected γ ~ (ak)1/2, where a is the plasma acceleration and k

is the axial wave length. However, as noted elsewhere,18 quantitative comparison is

difficult given that acceleration is not uniform throughout the plasma, and has a

complicated time history. In addition, curvature-driven m=0 modes of the type discussed

by Kadomtsev can occur as the plasma seeks equilibrium. At t = 700 ns, two oscillations

have taken place, and the Richtmeyer-Meshkov (RM) process has generated pronounced

spikes on the inner boundary of the plasma. The association with RM is based on the

qualitative observation that the density shows very rapid development of spikes when a

shock propagating from the outer wall passes over the plasma density gradient. By t =

1.65 us, the plasma is beginning to settle into an equilibrium, although the pressure

contours have a strong granularity that remains from the RT and RM modes.

An equilibrium with pressure and current contours uniform in z is not apparent in the

contour plots of Fig. 4. Because of the RT-like and curvature-driven m=0 instabilities the

plasma is generally in a state of fluctuation away from equilibrium even after radial
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dynamics have dissipated. A perturbation analysis of equilibrium shows that first order

perturbations in plasma or magnetic pressure give rise to second order corrections to

equilibrium balance between jxB and ∇∇∇∇p. Thus, provided the fluctuations are reasonably

small, one expects equilibrium to exist in an average sense even for a granular structure

like that shown at 1.65 µs in Fig. 4.

To examine equilibrium and stability properties for simulation results, we use z-averaged

quantities for variables such as pressure. For example, the symbol )(rp  is defined within

the computational domain of length Z to be:

∫≡
Z

dzzrp
Z

rp
0

),(
1

)(  (8)

We find that the discussion of Sec. II applies approximately to the z averaged quantities

with increasing accuracy as temporal fluctuations from the formation dynamics fade

away. To investigate the approach to equilibrium during the dynamic formation phase,

we compute a quantity ∆ defined as the difference between thermal energy per unit length

and diamagnetism as introduced in Eq. 2:

])1[(
16
3 2IU βδ
π

+−≡∆ (9)

We take the limits of integration to include the entire computational domain, so U is the

total thermal energy per unit length in the computation, and δ is evaluated at the inner

and outer radius. We know from Eq. 2 that in a static equilibrium ∆ is zero. When the
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DtDv /ρ term is considered, the equation of motion in one dimension can be used to

show:
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Thus ∆ is a measure of departure from equilibrium at least for one-dimensional behavior.

As velocity and oscillatory motion approach zero, Eq. 10 shows that delta should

approach zero. Despite the complicated structure of 2D equilibrium as seen in Fig. 3, the

value of ∆ computed with z-averaged values from the simulation approaches zero as

equilibrium is established, as shown in Fig. 5. The main contribution to the oscillations

seen in Fig. 5 comes from the inertial term (last term in Eq. 10).

Next we show the approach to stability using z-averaged pressure profiles. During the

formation phase with radial oscillations, the profiles obtained in simulations always show

regions where Q > 1. However, as time progresses, the radial oscillations subside, RT

modes fade away, and the pressure profile settles into a Kadomtsev-stable profile. This is

shown in Fig. 6 where z-averaged pressure profiles are displayed at two moments of time.

A marginally stable Kadomstsev profile is also shown with a heavy line for comparison.

The profile shown at 8 microseconds is very close to the marginal state outside r = 7 cm

(ie., Q ~ 1), and the inner region has Q < 1. A computer-generated movie of the sequence

of these pressure profiles gives the impression that the plasma is being gradually forced

by oscillations into a stable state that appears first at large radius and then at smaller and

smaller radius.
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This qualitative evolution to stability has been observed under a variety of initial

conditions pertinent to the experiment being planned. Sometimes, the pressure profile

obtained has more than one point of maximum pressure and does not much resemble the

profile in Fig. 2, but the value of Q appears to evolve in any case towards a value less

than unity at all radial locations except near cold boundaries. Presumably, although this

has not been checked in detail, the few-mm-thick cold boundary is evolving more slowly

because the thermal speed gets so small.

IV. Self-organization in simulations starting with idealized unstable equilibrium

The process of self-organization can be studied more readily if the initial conditions are a

well defined static equilibrium instead of dynamic formation like that in an experiment,

such as illustrated in the previous section. A static equilibrium was selected with Q = 1.1,

which makes the pressure gradient uniformly larger than the marginal profile required for

stability. The profile looks very similar to Fig. 2 (solid line), but with a slightly larger

gradient that drops from the same peak value to a pressure at the wall about 2/3 of the

value in Fig. 2. All boundaries for these simulations are reflecting boundaries like the

boundary at z=0 in the previous simulation. This prevents thermal conduction from

transferring energy out of the computational region during the development of instability.

The maximum pressure is taken as 5x107 Pa at r = 3 cm, and maximum β is 0.40. The

corresponding current on the hard core is 1 MA. The initial conditions are completed by

setting temperature as uniform equal to 300 eV, and by adding a 0.2% peak-to-peak

sinusoidal density perturbation with an axial wavelength of 4 cm.
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It might seem that the final plasma state following interchange would become exactly a Q

= 1 profile based on the expected tendency to evolve towards stability. That is not the

case because the particular shape of a Q=1 profile has different values of flux and total

energy (thermal plus magnetic) than the Q=1.1 profile. For the case at hand, the

difference is small, because flux and total energy for a Q=1 profile with the same peak

pressure (same hard-core current) differs from a Q=1.1 profile by only a few percent.

Never-the-less, this reasoning shows that the plasma relaxes to something with Q less

than or equal to unity everywhere, but not exactly Q=1.

Fig. 7 shows contour plots of mass density in color, and stream lines of velocity. The

interchange mode evolves much like a Rayleigh-Taylor mode with bubbles and spikes at

the expected locations. Unlike the formation process described in Sec. III, there is no

accelerated frame of reference in this simulation giving rise to an effective gravity. The

effective gravity comes from field line curvature with acceleration equal to Vi
2/R, where

Vi is the ion thermal speed, and R is the field line curvature.19 The growth rate in the

simulation can be determined by the exponential growth of kinetic energy at early times.

A least squares fit gives γ = 3.5 ± .3 x 107 sec-1 during the first microsecond of growth.

The uncertainty arises mainly from numerical noise introduced by round-off errors in

equilibrium at t = 0. A δW calculation has not been done for this profile to our

knowledge, but the approximate expression19 for sa /2=γ  , where s is the density

gradient length and a is the effective acceleration, gives γ ~ 1x107 sec-1. The growth rate

observed with other values of Q and perturbation wave length are listed in Table 1.



15

λz   (Q=1.1) γ Q   (λz = 4 cm) γ

2 cm 3.5 x 106 sec-1 1.1 3.5 x 106 sec-1

4 cm 3.2 x 106 sec-1 1.01 2.2 x 106 sec-1

8 cm 3.3 x 106 sec-1 1.000001 2.1 x 106 sec-1

Table 1.  Growth rates of m=0 mode for various values of Q and perturbation

wavelength in the axial direction.

The interchange nature of the mode with convective cells is apparent from the velocity

stream lines. Where the perturbed density is maximum (z=0, 4, 8 cm), pressure is larger

than jxB and plasma moves outward and develops nonlinearly into bubbles. At the anti

nodes, the opposite occurs and the motion develops nonlinearly into spikes.

The unstable interchange motion that develops can be divided into two phases: a coherent

phase that grows in a predictable way from the initial perturbation, followed by an

incoherent or chaotic turbulent phase which has no discernable relationship with the

initial conditions. In Fig. 7 the coherent phase is shown in the first three frames, and the
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incoherent phase has begun in the fourth frame at 2.85 µs. During the coherent phase,

kinetic energy of the interchange motion comes from thermal energy through adiabatic

PdV work on the plasma. This is seen graphically in Fig. 8, where kinetic energy and

thermal energy are plotted vs. time. In 2.6 µs kinetic energy grows to 85 J, while thermal

energy drops by the same amount from an initial value of 12.2 kJ. The values of U and

EM plotted in Fig. 8 are actually (U-12,200) and (EM-17,500) in order to see the changes

in U and EM on the same scale as KE, PdV, and shock heating. The pdV work in the

simulation, shown in the lower graph of Fig. 8, equals the kinetic energy during the

coherent phase of instability growth. Then as the mode develops into a nonlinear phase,

steep gradients develop and the vonNeumann-Richtmyer viscosity begins to dissipate

energy through shock heating. The transition from coherent to incoherent motion occurs

at about 2.8 µs, slightly later in time than the peak of kinetic energy where shock heating

begins. When viewed as a movie the transition is quite abrupt and the onset of incoherent

motion could be described as explosive.  The PdV work equals the change in thermal

energy, as shown in part (b) of Fig. 8.

During the interchange motion of instability, plasma moving inward is heated as it is

compressed, and plasma moving outward is cooled as it expands. The z-averaged

temperature, initially uniform with T = 300 eV, becomes considerably larger at small

radius (500-1000 eV), and smaller at large radius, but during the coherent phase of

motion, the average value is not very meaningful. This is illustrated in Fig. 9, which

shows contours of temperature near the end of the coherent phase of motion. Fig. 10

shows the adiabatic nature of the motion, by examining the temperature along a line
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where plasma is flowing inward and getting compressed. The temperature according to

the simulation is compared with a prediction (shown as cross-hatched points) based on

constant entropy  (p/ρ5/3). The motion of fluid elements from an earlier moment at the

same axial location (t=1 µs when T ~ 320 eV) is deduced by assuming fluid elements

conserve flux (dφ = B dr dz) and mass (dM=ρ 2π r dr dz), which means the ratio B/ρr can

be used to identify the moving fluid elements. In other words, locations in the plasma

with the same value of B/ρr at different times, can be associated with the location of fluid

elements, which heat according to constant p/ρ5/3. After the coherent phase ends and the

plasma enters a turbulent state, the z-averaged temperature profile is more meaningful in

the sense of less variation along z, and quits evolving in time. The profile would be

difficult if not impossible to predict because it depends upon the detailed non-linear

evolution of the plasma motion. Simulations show that the final maximum z-averaged

temperature profile can differ by as much as 300 eV, depending upon the level of density

perturbation introduced and whether it is introduced as a sinusoid or a random

perturbation.

V. Conclusions.

The evolution of an unstable plasma profile into a stable profile, which we term self-

organization,  appears to be a robust process. Although it was not termed self

organization, the same effect has been noted in past simulations with the same code.20

The result has been made easier to discern by the introduction of z-averaged profiles. A

recent report of PIC simulations in the hard-core z-pinch configuration also shows self-
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organization.21 Figures 3 and 4 in Reference 21 show how pressure profiles in a low-β

PIC simulation relax from unstable to stable.

The non-linear evolution of the interchange motion has been studied under controlled

initial conditions that result in exponential growth of a mode with a prescribed axial

wavelength. An interesting feature of such growth is an abrupt transition from coherent to

incoherent motion, after which the z-averaged pressure, current, and temperature profiles

become quasi stationary.

According to our understanding of MAGO experiments, the observed plasma behavior is

consistent with the expectation of self-organization, but the diagnostics are not

sufficiently detailed thus far to make a definite conclusion.22 The results of this

simulations reported in this paper add motivation to planned experiments on an inverse

pinch at UNR.
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FIGURES and CAPTIONS

Fig. 1.  Geometry of hard-core diffuse z
pinch. Axial currents produce Bθ magnetic
field.
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Fig. 2.  An example of an MHD-stable
current and pressure profile in a hard-core
diffuse z pinch. The equilibrium current can
be computed from the pressure using Eq. 1.
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Fig. 3.  Simulation results for thermal
energy (heavy line) and kinetic energy (thin
line) vs. time during plasma formation and
heating in an inverse pinch.
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Fig. 4.  Contour plots in r and z at indicated
times showing transition from dynamic to
equilibrium phase. Color is pressure
contours and lines are total current contours.
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Fig. 7.  Contour plots in r and z of density
(color) combined velocity stream lines
showing interchange motion of instability
for the idealized initial conditions.




